首页> 外文OA文献 >Sensor Fault Detection, Isolation and Identification Using Multiple Model-based Hybrid Kalman Filter for Gas Turbine Engines
【2h】

Sensor Fault Detection, Isolation and Identification Using Multiple Model-based Hybrid Kalman Filter for Gas Turbine Engines

机译:传感器故障检测,隔离和识别使用多个   基于模型的燃气涡轮发动机混合卡尔曼滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel sensor fault detection, isolation and identification(FDII) strategy is proposed by using the multiple model (MM) approach. Thescheme is based on multiple hybrid Kalman filters (HKF) which represents anintegration of a nonlinear mathematical model of the system with a number ofpiecewise linear (PWL) models. The proposed fault detection and isolation (FDI)scheme is capable of detecting and isolating sensor faults during the entireoperational regime of the system by interpolating the PWL models using aBayesian approach. Moreover, the proposed multiple HKF-based FDI scheme isextended to identify the magnitude of a sensor fault by using a modifiedgeneralized likelihood ratio (GLR) method which relies on the healthyoperational mode of the system. To illustrate the capabilities of our proposedFDII methodology, extensive simulation studies are conducted for a nonlineargas turbine engine. Various single and concurrent sensor fault scenarios areconsidered to demonstrate the effectiveness of our proposed on-linehierarchical multiple HKF-based FDII scheme under different flight modes.Finally, our proposed HKF-based FDI approach is compared with various filteringmethods such as the linear, extended, unscented and cubature Kalman filters(LKF, EKF, UKF and CKF, respectively) corresponding to both interacting andnon-interacting multiple model (MM) based schemes. Our comparative studiesconfirm the superiority of our proposed HKF method in terms of promptness ofthe fault detection, lower false alarm rates, as well as robustness withrespect to the engine health parameters degradations.
机译:本文提出了一种基于多模型(MM)方法的传感器故障检测,隔离与识别(FDII)策略。该方案基于多个混合卡尔曼滤波器(HKF),该滤波器代表系统的非线性数学模型与多个分段线性(PWL)模型的集成。通过使用贝叶斯方法对PWL模型进行插值,提出的故障检测和隔离(FDI)方案能够在系统的整个运行状态下检测和隔离传感器故障。此外,所提出的多个基于HKF的FDI方案被扩展为通过使用依赖于系统健康运行模式的改进的广义似然比(GLR)方法来识别传感器故障的幅度。为了说明我们提出的FDII方法的功能,对非线性燃气涡轮发动机进行了广泛的仿真研究。考虑了各种单发和并发传感器故障场景,以证明我们提出的基于HKF的在线分层多层次FDII方案在不同飞行模式下的有效性。最后,我们提出的基于HKF的FDI方法与各种滤波方法(例如线性,扩展,无味和温和的卡尔曼滤波器(分别为LKF,EKF,UKF和CKF),分别对应于基于交互模型和非交互多模型(MM)的方案。我们的比较研究证实了我们提出的HKF方法在故障检测的迅速性,较低的误报率以及相对于发动机健康参数下降的鲁棒性方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号